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The diffuse scattering of X-rays from a crystal containing defects involves a sum over all lattice points. 
This sum suffers from problems in convergence and truncation. These problems are investigated with 
a computer using the model of a simple cubic lattice containing a body-centered interstitial with a 
displacement field t~ = Cr/r3. Convergence is discussed in terms of a truncation parameter. Truncating 
the sum introduces a ripple which is removed when the finite resolution imposed by any measurement 
is taken into account. Both the truncation parameter and finite resolution determine distances in the 
lattice. The resolution distance dictates the choice of truncation distance and this is discussed for a 
Gaussian resolution function. We compare the results of the sum formulation with a commonly used 
integral approximation. Finally, we find that when the displacements produced by the defect are large 
the Huang scattering dominates the size-effect scattering and that in this case the diffuse scattering is 
more intense on the side of a reflection furthest from the origin. 

1. Introduction 

The diffuse scattering of X-rays from a crystal con- 
taining defects involves a sum over all lattice points. 
The function to be summed is 

exp {iK. rn} (exp {iK. l tn}-  1), 

where K is the difference between the incoming and 
scattered wavevectors, rn is the vector to the nth lattice 
point and ltn is its vector displacement (Keating, 1968). 
In practice, evaluation of this sum suffers from con- 
vergence and truncation errors. We have investigated 
these problems with a computer using the model of a 
simple cubic lattice containing a body-centered inter- 
stitial with a displacement field, Pn = Crn/r3n, where C is 
the defect strength (Eshelby, 1954). Our model is that 
employed by Martin (1960). Results have been obtained 
in terms of a truncation parameter e which is the ratio 
of the magnitude of the smallest displacement retained 
in the sum to the largest displacement. We have found 
that the diffuse scattering in those regions of reciprocal 
space readily accessible to measurement is reasonably 
stationary, to within ~15~o, for values of c<10 -3. 
For the model this implies summing over l0 s atoms 
or more. Although our expression for the diffuse 
intensity cannot be shown to converge in general, the 
expression one obtains taking into account finite exper- 
imental resolution can be shown to converge. Both the 
truncation parameter and the instrumental resolution 
determine distances in the lattice, and the resolution 
dictates the choice of truncation parameter. We discuss 
this for a Gaussian resolution function. If K. Itn is 

small then (exp {iK. Pn} -  1) is often approximated by 
iK. lan and the sum, being a Fourier transform, is 
evaluated using Ewald's (1938) integral transformation 
formula following Ekstein (1949). Using two very dif- 
ferent values of the strength we have compared this 
approximation with the results for the sums. Close to 
the Bragg reflections the agreement between the two 
methods is satisfactory for the smaller strength, but 
is considerably poorer for the larger strength. It is 
well known that the asymmetry in the diffuse scattering 
about a Bragg reflection is produced by the so called 
'size effect term' (Borie 1957, 1959; Goland & Keating 
1968) and depends on the sign of the strength and the 
Miller indices of the Bragg reflection (Cochran, 1956). 
However, given a strength of sufficient magnitude, the 
diffuse scattering is always asymmetric, with the inten- 
sity always more intense on the side of the reflection 
furthest from the origin. For large displacements this 
is explained by the fact that the Huang scattering 
(Huang, 1947) which has this symmetry completely 
dominates the size-effect scattering. 

Methods and results 

For our model the intensity of the diffuse scattering is 
given by* 

/(x)oc[1 + ~ exp (iK.r} (exp {iCK.r/r3} - 1)12 . (1) 
r ~ 0  

R(e) is the truncation distance determined by the 
truncation parameter e. Values of R(e) for various 
values of e considered are listed in Table 1. For our 
centrosymmetric model we can write 

* Work performed under the auspices of the U.S. Atomic 
Energy Commission. * See Keating (1968), equation (32). Here p,~ 1, and fa =fn. 
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Fig. 1. C o n t o u r s  of  diffuse scat ter ing for  R ( c ) =  1-66a. (a) 4 C a - 3 = 0 . 1 5 ,  (b) 4Ca-3=0"90 .  
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Fig. 2. C o n t o u r s  of  diffuse scat ter ing for R(e) = 4.77a. (a) 4Ca-3 = 0.15, (b) 4Ca-3 = 0.90. 
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Fig. 3. C o n t o u r s  of  diffuse scat ter ing for  R ( e ) =  12.5a. (a) 4Ca -3 = O. 15, (b) 4Ca -3 = 0-90. 
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Fig. 4. Contours of diffuse scattering for R(e) = 3 l '8a. (a) 4Ca-3 = 0.15, (b) 4Ca-3 = 0.90. 
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Fig. 5. Contours of diffuse scattering taking into account a finite resolution R(tr)= 15-9a, R(e)=31.8a. (a) 4Ca-3=0-15, (b) 
4Ca -3 =0-90. 
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Fig. 6. Contours of diffuse scattering using the approximation formula, equation (10). (a) 4Ca-3=0.15, (b) 4Ca-3=0-90. 
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I(hlhzh3) oc 
{1 - 2 ~ ~. ~ sin [4zcC (La) -3 (llhl + lzh2 + 13h3)] 

ll 1213 

×sin [~(1 +4C(La)  -3) (lxhl+12h2+13h3)]} 2 , (2) 

where r = (llax + lza2+ 13a3)/2 and the a's are triplet 
vectors of the unit cell, K = 2~z(hlbl + hzbz + h3b3) and 
the b's are the triplet vector set reciprocal to the a's, 
and L2=/12 +/22 + l~. T h e / ' s  are all odd and their limits 
are determined by the condition 2 2 l 1 + l~ + I~ < L2(e). 
Table 1 gives the values of e, R(e), L2(e), and the 
number of atoms in the sum, N(e), for the eight eases 
considered. For each of the eight cases the diffuse 
intensity was computed for 4Ca-3=0"15 and 0.90. In 
the rest of the paper Figures or Tables with an (a) or 
(b) refer to these two values, respectively. 

Table 1. Values of  the truncation parameter and related 
quantities 

Case e R(e)/a L2(e) N(e) 
1 5.0000 x 10-1 0.866 3 8 
2 1.3636 x 10-1 1.658 11 32 
3 4.2857 x 10-2 2.958 35 136 
4 1.6484 x 10-2 4-770 91 480 
5 6.1728 x 10-3 7.794 243 2008 
6 2.4000 x 10-3 12.500 625 8144 
7 9.3750 x 10-4 20.000 1600 33552 
8 3.7202 x 10-4 31.749 4032 134016 

The diffuse intensity was computed at all points hlh2 
modulo 0.02 for 0 < h i <  1.5, 0 < h 2 <  1.5, and h3=0 on 
a Control Data CDC 6600 computer using a contour 
routine to plot iso-diffuse intensity contours. The scat- 
tering for eases 2, 4, 6, and 8 is pictured in Figs. 1, 2, 3, 
and 4, respectively. The contour interval in all Figures 
(a) is 0.1 and is 0.5 in all Figures (b). All Figures 
contain 100 contours. Looking at Fig. 1 through Fig. 4 
one sees pronounced ripples in the diffuse scattering. 
These ripples are due to termination effects and the 
magnitude of their wavelength (in ]hi) can be estimated 
from 21~ I-2/[L[. In Fig. 1 through Fig. 4 these term- 
ination wavelengths are approximately 0.5, 0.17, 0.08 
and 0.03, respectively. Values of the diffuse intensity 
are listed in Tables 2(a) and 2(b) for selected points hlhzO 
in reciprocal space. The first eight columns of the 
Tables list values of the scattering as e, the truncation 
parameter, is decreased, or the number of atoms in the 
sum is increased. It is difficult to discern a clear pattern 
of convergence. The scattering at the points 0.5,0.5,0 
and 1.5,0.5,0 is remarkably insensitive to the number 
of terms retained in the sum for either value of the 
strength. The intensity at the point 1.30, 1.30, 0 is 
insensitive to the number of terms for the larger 
strength, but oscillates by several orders of magnitude 
for the smaller strength. For points near the Bragg 
reflections the intensity increases as the number of 
terms increases. Unless the termination wavelength is 
several times less than the distance from the Bragg 
reflection the calculated intensity cannot be expected 
to be representative of the true value. In general the 

oscillations in the scattering values settle down as e 
decreases or the number of terms increases, and the 
relative difference between the intensities in columns 
seven and eight is less than 15 %. 

As equations (1) and (2) stand there is a problem 
of convergence, and it is in fact not possible to prove 
in general that the sum converges. At large distan- 
ces we see that the magnitude of the terms decreases 
as  r -z,  but the number of terms increases as r 2. How- 
ever, if one averages equation (1) or equation (2) over 
a small volume of tc space the resulting expression can 
be shown to converge. In fact, any experimental 
measurement has some finite resolution which performs 
such an average. Let us illustrate this by assuming a 
Gaussian resolution function, (2~0"2) -3/2 exp[(K-K0)Z/2cr]. 
The average intensity at K0 can be written 

( I (Xo))ocl(A)lZ+((IAI)Z-I(m)l  z) (3) 

where 

R(e) 
I(A)12= 1 + Z exp {-[ r (1  +Cr-3)]2a2/2 

r~0 

+iKo.r(1 + Or-3)} -exp {-(ra)2/2 + ir, o.r} [ 2 . 
I 

(4) 
I 

So long as [2Cr -3 + (Cr-3) 2] (ro')2/2'~ 1, which it always 
is for any sensible defect strength and resolution 
breadth, we can neglect the difference in the exponen- 
tials quadratic in r and write 

•(e) 
I (A)I2-  - 1 + ~ exp {-(ra)2/2} exp {iK0.r} 

r e0  

x (exp {iCKo.r/r3} - 1)[ 2 
J 

(5) 

Equation (5) corresponds to averaging the scattering 
amplitude and then squaring rather than averaging the 
intensity. However, equation (5) is clearly convergent. 
Equation (5) differs from equation (1) only by the 
factor exp {-(ra)Z/2}, which is very easy to include in 
a computer program capable of computing equation 
(1). The additional terms in equation (3), which are a 
correction to I(A)I 2 so that the result is an average 
intensity, are 

( ( IAIZ)-I(A)lZ)  = Y~ ~ [exp{-[(r  + Cr/r3) 2 
r r e 

+(r' + Cr'/r'3)2]a2/2} [exp{ r.r '(1 + f i r  3) 

x (1 + C/r'3)a2} - 1] exp{iCKo.(r/r3--r'/r'3)} 

+ exp {--(rZ+r'2)az/2} [exp {r.r'a2}-- 1] 

- e x p  { - -  [ r Z + ( r  '-t- Cr'/r'3)2]cr2/2} 

×[exp {r.r'(1 + C/r'3)cr2} - 1] exp {iCKo.r'/r '3} 

- e x p  { - [ ( r  + Cr/r3)Z+r'2]a2/2} 

×[exp {r.r'(1 +C/r3)az} - 1] exp {iC~o.r/r3}] 

× exp {iKo.(r--r')}. (6) 
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The presence of the Gaussian factors in equation (6) 
assures convergence. Evalution of these contributions 
on the computer proved too costly and we omitted 
them. Since we did not compute these contributions 
we do not know for certain the importance of their 
contribution. However, if ¢r vanishes their contribution 
vanishes since the bracketed terms each vanish. Those 
terms for which - 1  ~r . r 'cr2~ 1 make a small con- 
tribution since the bracketed terms are small. If 
r . r ' a Z ~ -  1, then the Gaussian factors in each term 
are small. If r. r'o -2___ (r z + r'Z)a2/2 >> 1, the vectors r and 
r' are nearly equal, and their displacements are nearly 
equal and small. The first two positive terms are then 
largely cancelled by the latter two negative terms. 

If  we examine the squaring operation in either 
equation (1) or (2) we see that the summation enters 
in both linearly and quadratically. The linear term 
we call the size-effect scattering and the quadratic 
term the Huang (1947) scattering after Borie (1957, 
1959). Removing the truncation ripples in [(A)[ z with 
equation (5) means that the truncation ripples in the 
size-effect term are properly accounted for. It is impor- 
tant to recognize that the omitted terms in equation (6) 
involve corrections to the Huang scattering only. 

We chose cr = 0.0636 which corresponds to an exceed- 
ingly good resolution in diffuse-scattering measure- 
ments. Now ~r has the dimensions of a reciprocal length 
corresponding to a resolution length R(cr)= 1/cr = 15.9a. 
The results of treating case eight, for which R(e) = 31.8a, 
according to equation (5) are plotted in Fig. 5. For 
these values of R(cr) and R(8) the last term in the sum 
is reduced by exp ( - 2 } .  Although the resolution is 
only partially accounted for, the smoothing effect in 
Fig. 5 is quite pronounced. The ninth column of 
Tables 2(a) and 2(b) lists values for the scattering in 
case eight according to equation (5). The values of 
the scattering in this columns are generally a com- 
promise of the values in the preceding two columns. 

We have seen that even when the truncation param- 
eter lies between 3.72 and 9.38 × 10 -4 the relative ripple 
in the diffuse intensity readily accessible to measure- 
ment is of the order of 15 Vo. These ripples are clearly 
visible in Figs. 3 and 4 and in Tables 2(a) and 2(b). 
Further, all of the terms neglected are approximately 
described by a ripple of wavelength 2,~_2rc/R(e). We 
believe a few final qualitative remarks should be made 
about dropping terms such as those in equation (6) 
when a resolution function is taken into account. If 
the researcher has knowledge of the resolution function 
to be employed in his measurement then a parameter 
like R(a) is defined. The factor n-lR(e)/R(cr) determines 
approximately the number of termination ripples which 
are averaged by his resolution function. In our example 
R(e)/R(a)=2. Let (A(x)) be the scattering amplitude 
calculated by retaining all terms up to R(e) averaged 
over a resolution function f(x '-~c).  For our Gaussian 
resolution function (A(K)) is that in equation (5). 
Since this average removes the ripple in the amplitude 
given approximately by B exp {ixR(0}, we write our 

scattering amplitude, including the ripple as (A(x) )+  
B exp itcR(e). The relative ripple in the amplitude is 
B/(A(x)). We write for the intensity, 

iOc)ocl(A(Ic))12 [ l + 2 [ B I 
× cos(KR(e)+O)+ l B I2 ] 

<A(t¢)> . (7) 

The relative amplitude of the ripple in the intensity as 
seen in Fig. 3 or 4 is then 2]B[/I<A(x)>[, or just twice 
that in the amplitude itself. Now assuming that the 
average amplitude varys much more slowly with tc 
than the term representing the ripple, we write for the 
intensity at x0 when averaged over the resolution 
function 

(I(x0)) oc[(A(x0))[ 2 [1 -t-2 1 B ] 
. ( 8 )  

Now the second term within the brackets in equation 
(8) is twice the average of the relative ripple, and is small 
compared to unity. The last term represents approx- 
imately the relative difference between (I(~0)) and 
I(A(x0))[ e. In particular, for our Gaussian resolution 
function equation (8) becomes 

(IQco))ocl(AQco))[ z [1 +2  ] B 
(A(t¢0)) I 

x exp {-[R(e)/R(~r)]z]2} 

× cos (tcoR(e) + O) + l B ] 2 ] 
(A(xo)) , (9) 

where exp {-[R(e)/R(a)]2/2}=exp {--2}. Comparing 
columns eight and nine of Tables 2(a) and 2(b), we esti- 
mate [B 1/1 (A(x0))l to be generally less than 0.05. There- 
fore, the relative difference between ( I  (x0)) and[ (A (K0))l 2 
is about 0.3 %. 

Let us compare the preceding results for the diffuse 
scattering with an approximation that is often used 
to compute the scattering from defects. We treat K.Itn 
as a small quantity, write iK.gn for (exp {iK.lan}-l), 
and use Ewald's integral transformation formula, 
while retaining only the first term (Ewald, 1938; Ek- 
stein, 1945; Cochran, 1956) and write 

[ 1 -  2(-1)H+K+LC a3 ( Hnl + Kn2 + Ln3 + l ) I(x) oc ! + nl + 

sin 2Z@o/a ) (n~ + n22 + n~) 1/2 ] 2 (10) 
× ] • 

H, K, and L are the usual Miller indices. The n's define a 
vector g = 2zc(nlb~ + nzb2 + n3b3) from the reciprocal lat- 
tice point H, K, L to K. In Ewald's formula the second 
term in the bracket is to be summed over all H, K, L. 
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In practice only the contribution from the nearest H, K, 
L is considered. Here r0= (3a/2) x/2. The diffuse intensity 
was computed at all points nl, n2 and r/3 modulo 0.02 
for -½<n,<½, -½_<n2<½,  and n3=0 about the 
reflections 000, 100, and 110. A contour routine was 
used to plot iso-diffuse intensity contours within these 
zones. These zones were joined together in a composite 
covering the same region of reciprocal space as 
previously considered. The results are pictured in 
Fig. 6. Column ten in Tables 2(a) and 2(b) gives values 
of the diffuse intensity using this approximate method 
[equation (10)]. Some points hlh2 are common to two 
or more zones and the particular zone is identified in 
column eleven. For instance the point 0.5, 0.5 can be 
calculated from three different zones. The agreement 
amongst the different zones is poor especially in Table 
2(b). In Table 2(a) equation (10) gives values of the 
scattering close to the Bragg reflections in reasonable 
agreement with the preceding three columns. The 
agreement in Table 2(b) is considerably poorer. The 
diffuse scattering contours in Fig. 6(a) and (b) are 
similar in shape, while there is considerable difference 
in contour shape between the (a) and (b) parts of the 
other Figures. The reason for similarity in Fig. 6 is 
apparent from the form of equation (10). The second 
term is directly proportional to the strength. However, 
in equation (1), (2) or (5) the proportionality is in the 
argument of a circular function, and as the strength 
becomes large the contour shapes are altered, whereas 
in equation (10) they are only scaled. 

3. Summary 

We have shown that when the truncation parameter 
e < 10 -3 the diffuse scattering calculated according to 
the sum formulation is reasonably stationary to within 
,-~ 15 % in a region of reciprocal space readily accessible 
to measurement. The instability of the calculated scat- 
tering is associated with a termination ripple whose 
wavelength 2~_ 2zc/R(e). The stability can be improved 
by taking into account the finite resolution of any 
measurement. In this case R(e) should be chosen larger 
than twice the resolution distance R(a). While the 
expression for the intensity should be averaged over 

the resolution function, the computational procedures 
are costly, and we have given qualitative arguments 
for using the average over the amplitude instead. 
Finally, we have compared a commonly used approx- 
imation for the diffuse scattering with the sum for- 
mulation. As long as ~.ltn is small, then the approx- 
imation is in reasonable agreement with the sum 
formulation near the Bragg reflections. When this 
criterion is not well satisfied the agreement diverges. 

In conclusion we would like to say a few words 
about the size-effect term. If the strength of the defect 
is small then this term produces an asymmetry in the 
diffuse scattering about the Bragg reflections. For the 
model considered, if the sum of the Miller indices is 
even the scattering will be largest on the side of the 
reflection toward the origin of reciprocal space while 
if odd the reverse is true. This comes about because 
of the reinforcement or cancellation of the Huang 
scattering by the size-effect term. If the sign of the 
strength of the defect were not known it could be 
deduced from the size-effect term. However, the Huang 
scattering is always larger on the side of the reflection 
further from the origin. If the defect strength is large 
then the Huang term dominates the diffuse scattering 
and the intensity will always appear larger on the far 
side of a reflection as in the (b) parts of the Figures. 

The authors wish to express their thanks to Miss 
Estarose Wolfson and Mrs Margaret Hind, for pro- 
gramming the scattering equations on the Control 
Data 6600, and to Messrs Harry Maile and Emil 
Caiazza for preparation of the Figures. 
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